jueves, 31 de julio de 2008

trabajo

CABLE PAR TRENZADO
Es de los más antiguos en el mercado y en algunos tipos de aplicaciones es el más común, consiste en dos alambres de cobre o a veces de aluminio, aislados con un grosor de 1 mm aproximado. Los alambres se trenzan con el propósito de reducir la interferencia eléctrica de pares similares cercanos. Los pares trenzados se agrupan bajo una cubierta común de PVC (Policloruro de Vinilo) en cables multipares de pares trenzados (de 2, 4, 8, ...hasta 300 pares).
Un ejemplo de par trenzado es el sistema de telefonía, ya que la mayoría de aparatos se conectan a la central telefónica por intermedio de un par trenzado. Actualmente se han convertido en un estándar, de hecho en el ámbito de las redes LAN, como medio de transmisión en las redes de acceso a usuarios (típicamente cables de 2 ó 4 pares trenzados). A pesar que las propiedades de transmisión de cables de par trenzado son inferiores y en especial la sensibilidad ante perturbaciones extremas a las del cable coaxial, su gran adopción se debe al costo, su flexibilidad y facilidad de instalación, así como las mejoras tecnológicas constantes introducidas en enlaces de mayor velocidad, longitud, etc.
Básicamente se utilizan se utilizan los siguientes tipos de cable pares trenzados:
CABLE DE PAR TRENZADO NO APANTALLADO (UTP, Unshielded Twisted Pair):
Cable de pares trenzados más simple y empleado, sin ningún tipo de apantalla adicional y con una impedancia característica de 100 Ohmios. El conector más frecuente con el UTP es el RJ45, parecido al utilizado en teléfonos RJ11 (pero un poco mas grande), aunque también puede usarse otro (RJ11, DB25,DB11,etc), dependiendo del adaptador de red.
Es sin duda el que hasta ahora ha sido mejor aceptado, por su costo accesibilidad y fácil instalación. Sus dos alambres de cobre torcidos
aislados con plástico PVC, han demostrado un buen desempeño en las aplicaciones de hoy. Sin embargo a altas velocidades puede resultar vulnerable a las interferencias electromágneticas del medio ambiente.
CABLE DE PAR TRENZADO APANTALLADOS (STP, kshielded Twisted Pair):
En este caso, cada par va recubierto por una malla conductora que actúa de apantalla frente a interferencias y ruido eléctrico. Su impedancia es de 150 OHMIOS.
El nivel de protección del STP ante perturbaciones externas es mayor al ofrecido por UTP. Sin embargo es más costoso y requiere más instalación. La pantalla del STP para que sea más eficaz requiere una configuración de interconexión con tierra (dotada de continuidad hasta el terminal), con el STP se suele utilizar conectores RJ49.
Es utilizado generalmente en las instalaciones de procesos de datos por su capacidad y sus buenas características contra las radiaciones electromanéticas, pero el inconveniente es que es un cable robusto, caro y difícil de instalar.
CABLE DE PAR TRENZADO CON PANTALLA GLOBAL (FTP, Foiled Twisted Pair):
En este tipo de cable como en el UTP, sus pares no están apantallados, pero sí dispone de una apantalla global para mejorar su nivel de protección ante interferencias externas. Su impedancia característica típica es de 120 OHMIOS y sus propiedades de transmisión son mas parecidas a las del UTP. Además puede utilizar los mismos conectores RJ45.
Tiene un precio intermedio entre el UTP y STP.
El desmembramiento del sistema Bell en 1984 y la liberación de algunos países en el sistema de telecomunicaciones hizo, que quienes utilizaban los medios de comunicación con fines comerciales tuvieran una nueva alternativa para instalar y administrar servicios de voz y datos. Método que se designó como cableado estructurado, que consiste en equipos, accesorios de cables, accesorios de conexión y también la forma de cómo se conectan los diferentes elementos entre sí.
El EIA/TIA define el estándar EIA/TIA 568 para la instalación de redes locales (LAN). El cable trenzado mas utilizado es el UTP sin apantallar que trabajan con las redes 10Base-T de ethernet, Token Ring, etc. La EIA/TIA-568 selecciona cuatro pares trenzados en cada cable para acomodar las diversas necesidades de redes de datos y telecomunicaciones. Existen dos clases de configuraciones para los pines de los conectores del cable trenzado denominadas T568A y T568B. La configuración más utilizada es la T568A.
El cable par trenzado se maneja por categorías de cable:
Categoría 1: Cable de par trenzado sin apantallar, se adapta para los servicios de voz, pero no a los datos.
Categoría 2: Cable de par trenzado sin apantallar, este cable tiene cuatro pares trenzados y está certificado para transmisión de 4 mbps.
Categoría 3: Cable de par trenzado que soporta velocidades de transmisión de 10 mbps de ethernet 10Base-T, la transmisión en una red Token Ring es de 4 mbps. Este cable tiene cuatro pares.
Categoría 4: Cable par trenzado certificado para velocidades de 16 mbps. Este cable tiene cuatro pares.
Categoría 5: Es un cable de cobre par trenzado de cuatro hilos de 100 OHMIOS. La transmisión de este cable puede se a 100 mbps para soportar las nuevas tecnologías como ATM (Asynchronous Transfer Mode).
Existen varias opciones para el estándar 802,3 que se diferencian por velocidad, tipo de cable y distancia de transmisión.
10Base-T: Cable de par trenzado con una longitud aproximada de 500 mts, a una velocidad de 10 mbps.
1Base-5: Cable de par trenzado con una longitud extrema de 500 mts, a una velocidad de 1 mbps.
100Base-T: (Ethernet Rápida) Cable de par trenzado, nuevo estándar que soporta velocidades de 100 mbps que utiliza el método de acceso CSMA/CD.
100VG AnyLan: Nuevo estándar Ethernet que soporta velocidades de 100 mbps utilizando un nuevo método de acceso por prioridad de demandas sobre configuraciones de cableado par trenzado.
STP Horizontal media
STP Blackbone Media
STP Patch Cables
CONECTORES DE PAR TRENZADO CAP
.destacados_apuntes{ background-image: url('http://img.rincondelvago.com/iconos/destacados_mid.jpg'); background-repeat: repeat-y; width: 613px; }

CABLE COAXIAL. El cable coaxial consiste de un núcleo sólido de cobre rodeado por un aislante, una combinación de blindaje y alambre de tierra y alguna otra cubierta protectora. En el pasado del cable coaxial tenía rasgos de transmisión superiores (10 Mbs) que el cable par trenzado, pero ahora las técnicas de transmisión para el par trenzado igualan o superan los rasgos de transmisión del cable coaxial.
Sin embargo, el cable coaxial puede conectar dispositivos a través de distancias más largas que el cable par trenzado. Mientras que el cable coaxial es más común para redes del tipo ETHERNET y ARCENET, el par trenzado y la fibra óptica son más comúnmente utilizados en estos días. Los nuevos estándares para cable estructurado llaman al cable par trenzado capaz de manejar velocidades de transmisión de 100Mbps (10 veces más que el cable coaxial). El cable coaxial no interfiere con señales externas y puede transportar de forma eficiente señales en un gran ancho de banda con menor atenuación que un cable normal. Pero tiene una limitación fundamental: atenúa las altas frecuencias la perdida de frecuencia, expresada en decibelios por unidad de longitud, crece proporcional a la raíz cuadrada de la frecuencia de la señal). Por lo tanto podemos decir que el coaxial tiene una limitación para transportar señales de alta frecuencia en largas distancias ya que a partir de una cierta distancia el ruido superará a la señal. Esto obliga a usar amplificadores, que introducen ruido y aumenta el costo de la red. Se ha venido usando ampliamente desde la aparición de la red ethernet. Consiste, básicamente, en un hilo de cobre rodeado por una recubrimiento de aislante que a su vez esta recubierta por una malla de alambre . Todo el conjunto está envuelto por un recubrimiento aislante exterior.
Se suele suministrar en distintos diámetros, a mayor diámetro mayor capacidad de datos, pero también mayor costo. Los conectores resultan más caros y por tanto la terminación de los cables hace que los costos de instalación sean superiores. El cable coaxial tiene la ventaja de ser muy resistente a interferencias, comparado con el par trenzado, y por lo tanto, permite mayores distancias entre dispositivos. Entre ambos conductores existe un aislamiento de polietileno compacto o espumoso, denominado dieléctrico. Finalmente, y de forma externa, existe una capa aislante compuesta por PVC o Policloruro de Vinilo. El material dieléctrico define la de forma importante la capacidad del cable coaxial en cuanto a velocidad de transmisión por el mismo se refiere. Siempre haciendo referencia a la velocidad de la luz, la figura 2 muestra la velocidad que las señales pueden alcanzar en su interior. Lo interesante del cable coaxial es su amplia difusión en diferentes tipos de redes de transmisión de datos, no solamente en computación, sino también en telefonía y especialmente en televisión por cable. Existen distintos tipos de cables coaxiales, entre los que destacan los siguientes: Cable estándar ethernet, de tipo especial conforme a las normas IEEE 802.3 10 base5. Se denomina también cable coaxial “grueso”, y tiene una impedancia de 50 ohmios. El conector que utiliza es del tipo “N”. Cable coaxial ethernet delgado, denominado también RG-58, con una impedancia de 50 ohmios. El conector utilizado es del tipo “BNC”. Cable coaxial del tipo RG-62, con una impedancia de 93 ohmios. Es el cable estándar utilizado en la gama de equipos 3270 de IBM, y también en la red. ARCNET. Usa un conector BNC. Cable coaxial del tipo RG-59, con una impedancia de 75 ohmios. Este tipo de cable lo utiliza en versión doble, la red WANGNET, y dispone de conectores DNC y TNC. Cable coaxial grueso, es el bable más utilizado en LAN en un principio y que aún hoy sigue usándose en determinadas circunstancias. Cable coaxial delgado, este surgió como alternativa al cable anterior, al ser barato y fácil de instalar, sin embargo sus propiedades de transmisión ( perdidas en empalmes y conexiones, distancia máxima de enlace, etc ). (Fuente de la información: Patricio Mariño, Mexico. )
Fibra óptica
De Wikipedia, la enciclopedia libre
(Redirigido desde Cable de fibra óptica)
Saltar a navegación, búsqueda

Fibra Óptica.
La fibra óptica es un conductor de ondas en forma de filamento, generalmente de vidrio, aunque también puede ser de materiales plásticos. La fibra óptica es capaz de dirigir la luz a lo largo de su longitud usando la reflexión total interna. Normalmente la luz es emitida por un láser o un LED.
Las fibras son ampliamente utilizadas en telecomunicaciones, ya que permiten enviar gran cantidad de datos a gran velocidad, mayor que las comunicaciones de radio y cable. También se utilizan para redes locales. Son el medio de transmisión inmune a las interferencias por excelencia. Tienen un costo elevadoHistoria [editar]
Como resultado de estudios en física enfocados de la óptica, se descubrió un nuevo empleo para la luz llamado rayo láser. Este ultimo es usado con mayor vigor en el área de las telecomunicaciones debido a lo factible que es enviar mensajes con altas velocidades y con una amplia cobertura. Sin embargo, no existía un conducto para hacer viajar los fotones originados por el láser.
La posibilidad de controlar un rayo de luz, dirigirlo hacia una trayectoria recta se conoce desde hace mucho tiempo. El físico irlandés John Tyndall descubrió que la luz podía viajar dentro de un material (agua), curvándose por reflexión interna y en 1870 desmostró sus estudios a los miembros de la Royal Society. Este principio fue utilizado en su época para iluminar corrientes del agua en fuentes públicas. Más tarde J.L. Baird registró patentes que describían la utilización de bastones sólidos de vidrio en la trasmisión de luz, para su empleo en un primitivo sistema de televisión de colores.
El gran problema, sin embargo, es que las técnicas y los materiales usados no permitían la trasmisión de luz con buen rendimiento. Las pérdidas eran tan grandes y no habían dispositivos de acoplamiento óptico.
Solamente en 1950 las fibras ópticas comenzaron a interesar a los investigadores, con muchas aplicaciones prácticas que estaban siendo desarrolladas. En 1952, el físico Narinder Singh Kapany, apoyándose en los estudios de John Tyndall, realizó experimentos que condujeron a la invención de la fibra óptica.
Uno de los primeros usos de la fibra óptica fue emplear un haz de fibras para la transmisión de imágenes, que se usó en el endoscopio médico. Usando la fibra óptica, se consiguió un endoscopio semiflexible, el cual fue patentado por la Universidad de Michigan en 1956. En este invento se usaron unas nuevas fibras forradas con un material de bajo índice de refracción, ya que antes se impregnaban con aceites o ceras.
Charles Kao, en su tesis doctoral de 1956, estimó que las máximas pérdidas que debería tener la fibra óptica, para que resultara práctica en enlaces de comunicaciones, eran de 20 dB/km. En 1970 los investigadores Maurer, Keck, Schultz y Zimar que trabajaban para Corning Glass fabricaron la primera fibra óptica aplicando impurezas de titanio en sílice. Las pérdidas eran de 17 dB/km. Durante esta década las técnicas de fabricación se mejoraron, consiguiendo pérdidas de tan solo 0,5 dB/km. Y en 1978 ya se transmitía a 10 Gb km/segundos.
En 1966 un comunicado dirigido a la British Association for the Advancement of Science, los investigadores Charles Kao y G.A. Hockham, de Inglaterra, propusieron el uso de fibras de vidrio y luz, en lugar de electricidad y conductores metálicos, en la trasmisión de mensajes telefónicos. La obtención de tales fibras exigió grandes esfuerzos de los investigadores, ya que las fibras hasta entonces presentaban pérdidas de orden de 100 dB por kilómetro, además de una banda pasante estrecha y una enorme fragilidad mecánica. Mientras tanto, como resultado de los esfuerzos, se hicieron nuevas fibras con atenuación de 20 dB por kilómetro y una banda pasante de 1 GHz para un largo de 1 km, con la perspectiva de sustituir los cables coaxiales. La utilización de fibras de 100 µm de diámetro, envueltas en nylon resistente, permitirían la construcción de hilos tan fuertes que no puedan ser rotos con las manos. Hoy ya existen fibras ópticas con atenuaciones tan pequeñas como de 1 dB por kilómetro, lo que es muchísimo menor a las pérdidas de un cable coaxial.
El 22 de abril de 1977, General Telephone and Electronics envió la primera transmisión telefónica a través de fibra óptica, en 6 Mbit/s, en Long Beach, California.
El amplificador que marcó un antes y un después en el uso de la fibra óptica en conexiones interurbanas, reduciendo el coste de ellas, fue el amplificador óptico inventado por David Payne de la Universidad de Southampton, y por Emmanuel Desurvire en los laboratorios de Bell. A los cuales les fue dada la medalla Benjamin Franklin en 1988.
El primer enlace transoceánico con fibra óptica fue el TAT-8 que comenzó a operar en 1988. Desde entonces se ha empleado fibra óptica en multitud de enlaces transoceánicos o entre ciudades, y paulatinamente se va extendiendo su uso desde las redes troncales de las operadoras hacia los usuarios finales.

Aplicaciones [editar]
Su uso es muy variado, desde comunicaciones digitales, pasando por sensores y llegando a usos decorativos, como árboles de navidad, veladores y otros elementos similares.

Comunicaciones con fibra óptica [editar]
La fibra óptica se emplea como medio de transmisión para las redes de telecomunicaciones, ya que por su flexibilidad los conductores ópticos pueden agruparse formando cables. Las fibras usadas en este campo son de plástico o de vidrio, y algunas veces de los dos tipos. Para usos interurbanos son de vidrio, por la baja atenuación que tienen.
Para las comunicaciones se emplean fibras multimodo y monomodo, usando las multimodo para distancias cortas (hasta 5000 m) y las monomodo para acoplamientos de larga distancia. Debido a que las fibras monomodo son más sensibles a los empalmes, soldaduras y conectores, las fibras y los componentes de éstas son de mayor costo que los de las fibras multimodo.

Sensores de fibra óptica [editar]
Las fibras ópticas se pueden utilizar como sensores para medir la tensión, la temperatura, la presión y otros parámetros. El tamaño pequeño y el hecho de que por ellas no circula corriente eléctrica le da ciertas ventajas respecto al sensor eléctrico.
Las fibras ópticas se utilizan como hidrófonos para los sismos o aplicaciones de sónar. Se ha desarrollado sistemas hidrofónicos con más de 100 sensores usando la fibra óptica. Los hidrófonos son usados por la industria de petróleo así como las marinas de guerra de algunos países. La compañía alemana Sennheiser desarrolló un micrófono que trabajaba con un láser y las fibras ópticas.
Los sensores de fibra óptica para la temperatura y la presión se han desarrollado para pozos petrolíferos. Estos sensores pueden trabajar a mayores temperaturas que los sensores de semiconductores.
Otro uso de la fibra óptica como un sensor es el giroscopio óptico que usa el Boeing 767 y el uso en microsensores del hidrógeno.

Más usos de la fibra óptica [editar]
Se puede usar como una guía de onda en aplicaciones médicas o industriales en las que es necesario guiar un haz de luz hasta un blanco que no se encuentra en la línea de visión.
La fibra óptica se puede emplear como sensor para medir tensiones, temperatura, presión así como otros parámetros.
Es posible usar latiguillos de fibra junto con lentes para fabricar instrumentos de visualización largos y delgados llamados endoscopios. Los endoscopios se usan en medicina para visualizar objetos a través de un agujero pequeño. Los endoscopios industriales se usan para propósitos similares, como por ejemplo, para inspeccionar el interior de turbinas.
Las fibras ópticas se han empleado también para usos decorativos incluyendo iluminación, árboles de Navidad.
Líneas de abonado
Las fibras ópticas son muy usadas en el campo de la iluminación. Para edificios donde la luz puede ser recogida en la azotea y ser llevada mediante fibra óptica a cualquier parte del edificio.
También es utilizada para trucar el sistema sensorial de los taxis provocando que el taxímetro (algunos le llaman cuentafichas) no marque el costo real del viaje.
Se emplea como componente en la confección del hormigón translúcido, invención creada por el arquitecto húngaro Ron Losonczi, que consiste en una mezcla de hormigón y fibra óptica formando un nuevo material que ofrece la resistencia del hormigón pero adicionalmente, presenta la particularidad de dejar traspasar la luz de par en par.

Características [editar]
La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas.

Núcleo y revestimiento de la fibra óptica.
Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total.
Así, en el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias.

Funcionamiento [editar]
Los principios básicos de funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell.
Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el núcleo, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo limite.

Ventajas [editar]
Su ancho de banda es muy grande (teóricamente de hasta 1 THz), mediante técnicas de multiplexación por división de frecuencias (WDM/DWDM), que permiten enviar hasta 100 haces de luz (cada uno con una longitud de onda diferente) a una velocidad de 10 Gb/s cada uno por una misma fibra, se llegan a obtener velocidades de transmisión totales de 10 Tb/s.
Es inmune totalmente a las interferencias electromagnéticas.

Desventajas [editar]
A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes:
La alta fragilidad de las fibras.
Necesidad de usar transmisores y receptores más caros
Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de rotura del cable
No puede transmitir electricidad para alimentar repetidores intermedios
La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica
La fibra óptica convencional no puede transmitir potencias elevadas.[1]
No existen memorias ópticas

Tipos [editar]
Las diferentes trayectorias que puede seguir un haz de luz en el interior de una fibra se denominan modos de propagación. Y según el modo de propagación tendremos dos tipos de fibra óptica: multimodo y monomodo.

Tipos de fibras óptica.

Fibra multimodo [editar]
Una fibra multimodo es aquella en la que los haces de luz pueden circular por más de un modo o camino. Esto supone que no llegan todos a la vez. Una fibra multimodo puede tener más de mil modos de propagación de luz. Las fibras multimodo se usan comúnmente en aplicaciones de corta distancia, menores a 1 km; es simple de diseñar y económico.
Su distancia máxima es de 2 km y usan diodos láser de baja intensidad.
El núcleo de una fibra multimodo tiene un índice de refracción superior, pero del mismo orden de magnitud, que el revestimiento. Debido al gran tamaño del núcleo de una fibra multimodo, es más fácil de conectar y tiene una mayor tolerancia a componentes de menor precisión.
Dependiendo el tipo de índice de refracción del núcleo, tenemos dos tipos de fibra multimodo:
Índice escalonado: en este tipo de fibra, el núcleo tiene un índice de refracción constante en toda la sección cilíndrica, tiene alta dispersión modal.
Índice gradual: mientras en este tipo, el índice de refracción no es constante, tiene menor dispersión modal y el núcleo se constituye de distintos materiales.

Fibra monomodo [editar]
Una fibra monomodo es una fibra óptica en la que sólo se propaga un modo de luz. Se logra reduciendo el diámetro del núcleo de la fibra hasta un tamaño (8,3 a 10 micrones) que sólo permite un modo de propagación. Su transmisión es paralela al eje de la fibra. A diferencia de las fibras multimodo, las fibras monomodo permiten alcanzar grandes distancias (hasta 100 km máximo, mediante un láser de alta intensidad) y transmitir elevadas tasas de información (decenas de Gb/s).

Componentes de la fibra óptica [editar]
Dentro de los componentes que se usan en la fibra óptica caben destacar los siguientes: los conectores, el tipo de emisor del haz de luz, los conversores de luz, etc.

Tipos de conectores [editar]
Estos elementos se encargan de conectar las líneas de fibra a un elemento, ya puede ser un transmisor o un receptor. Los tipos de conectores disponibles son muy variados, entre los que podemos encontrar se hallan los siguientes:

Tipos de conectores de la fibra óptica.
FC, que se usa en la transmisión de datos y en las telecomunicaciones.
FDDI, se usa para redes de fibra óptica.
LC y MT-Array que se utilizan en transmisiones de alta densidad de datos.
SC y SC-Dúplex se utilizan para la transmisión de datos.
ST se usa en redes de edificios y en sistemas de seguridad.

Emisores del haz de luz [editar]
Estos dispositivos se encargan de emitir el haz de luz que permite la transmisión de datos, estos emisores pueden ser de dos tipos:
LEDs. Utilizan una corriente de 50 a 100 mA, su velocidad es lenta, solo se puede usar en fibras multimodo, pero su uso es fácil y su tiempo de vida es muy grande, además de ser económicos.
Lasers. Este tipo de emisor usa una corriente de 5 a 40 mA, son muy rápidos, se puede usar con los dos tipos de fibra, monomodo y multimodo, pero por el contrario su uso es difícil, su tiempo de vida es largo pero menor que el de los LEDs y también son mucho más costosos.

Conversores Luz-Corriente eléctrica [editar]
Este tipo de conversores convierten las señales ópticas que proceden de la fibra en señales eléctricas. Se limitan a obtener una corriente a partir de la luz modulada incidente, esta corriente es proporcional a la potencia recibida, y por tanto, a la forma de onda de la señal moduladora.
Se fundamenta en el fenómeno opuesto a la recombinación, es decir, en la generación de pares electrón-hueco a partir de los fotones. El tipo más sencillo de detector corresponde a una unión semiconductora P-N.
Las condiciones que debe cumplir un fotodetector para su utilización en el campo de las comunicaciones, son las siguientes:
La corriente inversa (en ausencia de luz) debe de ser muy pequeña, para así poder detectar señales ópticas muy débiles (alta sensibilidad).
Rapidez de respuesta (gran ancho de banda).
El nivel de ruido generado por el propio dispositivo ha de ser mínimo.
Hay dos tipos de detectores los fotodiodos PIN y los de avalancha APD.
Detectores PIN: Su nombre viene de que se componen de una unión P-N y entre esa unión se intercala una nueva zona de material intrínseco (I), la cual mejora la eficacia del detector.
Se utiliza principalmente en sistemas que permiten una fácil discriminación entre posibles niveles de luz y en distancias cortas.
Detectores APD: El mecanismo de estos detectores consiste en lanzar un electrón a gran velocidad (con la energía suficiente), contra un átomo para que sea capaz de arrancarle otro electrón.
Estos detectores se pueden clasificar en tres tipos:
de silicio: presentan un bajo nivel de ruido y un rendimiento de hasta el 90% trabajando en primera ventana. Requieren alta tensión de alimentación (200-300V).
de germanio: aptos para trabajar con longitudes de onda comprendidas entre 1000 y 1300 nm y con un rendimiento del 70%.
de compuestos de los grupos III y V.

Cables de fibra óptica [editar]
Un cable de fibra óptica esta compuesto por un grupo de fibras ópticas por el cual se transmiten señales luminosas. Las fibras ópticas comparten su espacio con hiladuras de aramida que le confieren la necesaria resistencia a la tracción.

Sección de un cable de fibra óptica.
Los cables de fibra óptica proporcionan una alternativa sobre los coaxiales en la industria de la electrónica y las telecomunicaciones. Así, un cable con 8 fibras ópticas tiene un tamaño bastante más pequeño que los utilizados habitualmente, puede soportar las mismas comunicaciones que 60 cables de 1623 pares de cobre o 4 cables coaxiales de 8 tubos, todo ello con una distancia entre repetidores mucho mayor.
Por otro lado, el peso del cable de fibra óptica es muchísimo menor que el de los coaxiales, ya que una bobina del cable de 8 fibras antes citado puede pesar del orden de 30 kg/km, lo que permite efectuar tendidos de 2 a 4 km de una sola vez, mientras que en el caso de los cables de cobre no son prácticas distancias superiores a 250 - 300 m.

Conectores de cable de fibra óptica.

Conectores [editar]
Los conectores más comunes usados en la fibra óptica para redes de área local son los conectores ST y SC.
El conector SC (Straight Connection) es un conector de inserción directa que suele utilizarse en conmutadores Ethernet de tipo Gigabit. El conector ST (Straight Tip) es un conector similar al SC, pero requiere un giro del conector paGuía de onda
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
En electromagnetismo y en telecomunicación, una guía de onda es cualquier estructura física que guía ondas electromagnéticasra su inserción, deHistoria [editar]
La primera guía de onda fue propuesta por Joseph John Thomson en 1893 y experimentalmente verificada por O. J. Lodge en 1894. El análisis matemático de los modos de propagación de un cilindro metálico hueco fue realizado por primera vez por Lord Rayleigh en 1897.

Principios de operación [editar]
Dependiendo de la frecuencia, se pueden construir con materiales conductores o dieléctricos. Generalmente, cuanto más baja es la frecuencia, mayor es la guía de onda. Por ejemplo, el espacio entre la superficie terrestre y la ionosfera la atmósfera actúa como una guía de onda. Las dimensiones limitadas de la Tierra provocan que esta guía de onda actúe como cavidad resonante para las ondas electromagnéticas en la banda ELF. (véase Resonancia Schumann). Las guías de onda también puede tener dimensiones de pocos centímetros. Un ejemplo puede ser aquellas utilizadas por los satélites de EHF y por los radares.

Análisis [editar]
Las guías de onda electromagnéticas se analizan resolviendo las ecuaciones de Maxwell. Estas ecuaciones tienen soluciones múltiples, o modos, que son los autofunciones del sistema de ecuaciones. Cada modo es pues caracterizado por un autovalor, que corresponde a la velocidad de propagación axial de la onda en la guía.
Los modos de propagación dependen de la longitud de onda, de la polarización y de las dimensiones de la guía. El modo longitudinal de una guía de onda es un tipo particular de onda estacionaria formado por ondas confinadas en la cavidad. Los modos transversales se clasifican en tipos distintos:
modo TE (Transversal eléctrico), la componente del campo eléctrico en la dirección de propagación es nula.
modo TM (Transversal magnético), la componente del campo magnético en la dirección de propagación es nula.
modo TEM (Transversal electromagnético), la componente tanto del campo eléctrico como del magnético en la dirección de propagación es nula.
modo híbrido, son los que sí tienen componente en la dirección de propagación tanto en el campo eléctrico como en el magnético.
En guías de onda rectangulares el modo fundamental es el TE1,0 y en guías de onda circulares es el TE1,1.
El ancho de banda de una guía de onda viene limitado por la aparición de modos superiores. En una guía rectangular, sería el TE0,1. Para aumentar dicho ancho de banda se utilizan otros tipos de guía, como la llamada "Double Ridge", con sección en forma de "H".

Aplicaciones [editar]
Las guías de onda son adecuadas para transmitir señales debido a su bajas pérdidas. Por ello, se usan en microondas, a pesar de su ancho de banda limitado y volumen, mayor que el de líneas impresas o coaxiales para la misma frecuencia.
También se realizan distintos dispositivos en guías de onda, como acopladores direccionales, filtros, circuladores y otros.
Actualmente, son especialmente importantes, y lo serán más en el futuro, las guías de onda dieléctricas trabajando a frecuencias de la luz visible e infrarroja, habitualmente llamadas fibra óptica, útiles para transportar información de banda ancha, sustituyendo a los cables coaxiales y enlaces de microondas en las redes telefónicas y, en general, las redes de datos.

Guía de onda acústicas [editar]
Artículo principal: Guía de onda (acústica)
Una guía de onda acústica es una estructura física para el guiado de ondas de sonido. Un ducto para la propagación sónica también se comporta como una línea de transmisión. El ducto contiene algun medio, como aire, para soportar la propagación del sonido.

Síntesis del sonido [editar]
Artículo principal: Síntesis digital de guía de onda
El uso de líneas digitales de retardo como elementos computacionales de simulación de propagación de ondas en tubos de Instrumento de viento y en cuerdas vibrantes de instrumentos de cuerdas. modo similar a los conectores coaxiales.Historia [editar]
La primera guía de onda fue propuesta por Joseph John Thomson en 1893 y experimentalmente verificada por O. J. Lodge en 1894. El análisis matemático de los modos de propagación de un cilindro metálico hueco fue realizado por primera vez por Lord Rayleigh en 1897.

Principios de operación [editar]
Dependiendo de la frecuencia, se pueden construir con materiales conductores o dieléctricos. Generalmente, cuanto más baja es la frecuencia, mayor es la guía de onda. Por ejemplo, el espacio entre la superficie terrestre y la ionosfera la atmósfera actúa como una guía de onda. Las dimensiones limitadas de la Tierra provocan que esta guía de onda actúe como cavidad resonante para las ondas electromagnéticas en la banda ELF. (véase Resonancia Schumann). Las guías de onda también puede tener dimensiones de pocos centímetros. Un ejemplo puede ser aquellas utilizadas por los satélites de EHF y por los radares.

Análisis [editar]
Las guías de onda electromagnéticas se analizan resolviendo las ecuaciones de Maxwell. Estas ecuaciones tienen soluciones múltiples, o modos, que son los autofunciones del sistema de ecuaciones. Cada modo es pues caracterizado por un autovalor, que corresponde a la velocidad de propagación axial de la onda en la guía.
Los modos de propagación dependen de la longitud de onda, de la polarización y de las dimensiones de la guía. El modo longitudinal de una guía de onda es un tipo particular de onda estacionaria formado por ondas confinadas en la cavidad. Los modos transversales se clasifican en tipos distintos:
modo TE (Transversal eléctrico), la componente del campo eléctrico en la dirección de propagación es nula.
modo TM (Transversal magnético), la componente del campo magnético en la dirección de propagación es nula.
modo TEM (Transversal electromagnético), la componente tanto del campo eléctrico como del magnético en la dirección de propagación es nula.
modo híbrido, son los que sí tienen componente en la dirección de propagación tanto en el campo eléctrico como en el magnético.
En guías de onda rectangulares el modo fundamental es el TE1,0 y en guías de onda circulares es el TE1,1.
El ancho de banda de una guía de onda viene limitado por la aparición de modos superiores. En una guía rectangular, sería el TE0,1. Para aumentar dicho ancho de banda se utilizan otros tipos de guía, como la llamada "Double Ridge", con sección en forma de "H".

Aplicaciones [editar]
Las guías de onda son adecuadas para transmitir señales debido a su bajas pérdidas. Por ello, se usan en microondas, a pesar de su ancho de banda limitado y volumen, mayor que el de líneas impresas o coaxiales para la misma frecuencia.
También se realizan distintos dispositivos en guías de onda, como acopladores direccionales, filtros, circuladores y otros.
Actualmente, son especialmente importantes, y lo serán más en el futuro, las guías de onda dieléctricas trabajando a frecuencias de la luz visible e infrarroja, habitualmente llamadas fibra óptica, útiles para transportar información de banda ancha, sustituyendo a los cables coaxiales y enlaces de microondas en las redes telefónicas y, en general, las redes de datos.

Guía de onda acústicas [editar]
Artículo principal: Guía de onda (acústica)
Una guía de onda acústica es una estructura física para el guiado de ondas de sonido. Un ducto para la propagación sónica también se comporta como una línea de transmisión. El ducto contiene algun medio, como aire, para soportar la propagación del sonido.

Síntesis del sonido [editar]
Artículo principal: Síntesis digital de guía de onda
El uso de líneas digitales de retardo como elementos computacionales de simulación de propagación de ondas en tubos de Instrumento de viento y en cuerdas vibrantes de instrumentos de cuerdas.

No hay comentarios: